Summation over Matsubara axis#
In many cases, we want to perform the summation of a Greens-function-like object \(A(\mathrm{i}\omega)\) over the Matsubara axis.
The Fourier transform of \(A\) reads
\[
A(\tau) = \frac{1}{\beta} \sum_{\omega} A(\mathrm{i}\omega) e^{-\mathrm{i}\omega \tau}.
\]
This leads to the following the two formula:
\[\begin{split}
\begin{align}
\sum_{\omega} A(\mathrm{i}\omega) e^{\mathrm{i}\omega 0^+} &= \beta A(\tau=0^-), \\
\sum_{\omega} A(\mathrm{i}\omega) e^{\mathrm{i}\omega 0^-} &= \beta A(\tau=0^+). \\
\end{align}
\end{split}\]
We now expand \(A(\mathrm{i}\omega)\) at high frequencies as
\[
A(\mathrm{i}\omega) = \frac{c_1}{\mathrm{i}\omega} + \frac{c_2}{(\mathrm{i}\omega)^2} + \cdots.
\]
As discussed in Sec. B3 of E. Gull’s Ph. D thesis, \(A(\tau=0^+) = A(\tau=0^-)\) if and only if \(c_1 = 0\). This condition is equivalent that \(A(\mathrm{i}\omega)\) vanishes at high frequencies faster than \(O(1/{\mathrm{i}\omega})\). If \(c_1 \neq 0\), the summation does NOT converge without a convergence factor and thus \( \sum_{\omega} A(\mathrm{i}\omega) e^{\mathrm{i}\omega 0^+} \neq \sum_{\omega} A(\mathrm{i}\omega) e^{\mathrm{i}\omega 0^-}\).