Bibliograpy#

[ATV04]

S. Allen, A.-M. S. Tremblay, and Y. M. Vilk. Conserving Approximations vs. Two-Particle Self-Consistent Approach, chapter 8. Springer-Verlag New York, 2004. arXiv:cond-mat/0110130.

[AKA00]

Ryotaro Arita, Kazuhiko Kuroki, and Hideo Aoki. D- and p-wave superconductivity mediated by spin fluctuations in two- and three-dimensional single-band repulsive hubbard model. Journal of the Physical Society of Japan, 69(4):1181–1191, 2000. URL: https://doi.org/10.1143/JPSJ.69.1181, arXiv:https://doi.org/10.1143/JPSJ.69.1181, doi:10.1143/JPSJ.69.1181.

[BS66]

N. F. Berk and J. R. Schrieffer. Effect of Ferromagnetic Spin Correlations on Superconductivity. Physical Review Letters, 17(8):433–435, aug 1966. URL: https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.17.433, doi:10.1103/physrevlett.17.433.

[BSW89]

N. E. Bickers, D. J. Scalapino, and S. R. White. Conserving approximations for strongly correlated electron systems: bethe-salpeter equation and dynamics for the two-dimensional hubbard model. Phys. Rev. Lett., 62:961–964, Feb 1989. URL: https://link.aps.org/doi/10.1103/PhysRevLett.62.961, doi:10.1103/PhysRevLett.62.961.

[BS89]

N.E Bickers and D.J Scalapino. Conserving approximations for strongly fluctuating electron systems. i. formalism and calculational approach. Annals of Physics, 193(1):206–251, 1989. URL: https://www.sciencedirect.com/science/article/pii/000349168990359X, doi:https://doi.org/10.1016/0003-4916(89)90359-X.

[KCP22]

Jason Kaye, Kun Chen, and Olivier Parcollet. Discrete lehmann representation of imaginary time green's functions. Phys. Rev. B, 105:235115, Jun 2022. URL: https://link.aps.org/doi/10.1103/PhysRevB.105.235115, doi:10.1103/PhysRevB.105.235115.

[LWC+20]

Jia Li, Markus Wallerberger, Naoya Chikano, Chia-Nan Yeh, Emanuel Gull, and Hiroshi Shinaoka. Sparse sampling approach to efficient ab initio calculations at finite temperature. Physical Review B, 101(3):035144, 01 2020. doi:10.1103/physrevb.101.035144.

[LW60]

J. M. Luttinger and J. C. Ward. Ground-state energy of a many-fermion system. ii. Phys. Rev., 118:1417–1427, Jun 1960. URL: https://link.aps.org/doi/10.1103/PhysRev.118.1417, doi:10.1103/PhysRev.118.1417.

[MAL+00]

S. Moukouri, S. Allen, F. Lemay, B. Kyung, D. Poulin, Y. M. Vilk, and A.-M. S. Tremblay. Many-body theory versus simulations for the pseudogap in the hubbard model. Phys. Rev. B, 61:7887–7892, Mar 2000. URL: https://link.aps.org/doi/10.1103/PhysRevB.61.7887, doi:10.1103/PhysRevB.61.7887.

[OOSY17]

Junya Otsuki, Masayuki Ohzeki, Hiroshi Shinaoka, and Kazuyoshi Yoshimi. Sparse modeling approach to analytical continuation of imaginary-time quantum Monte Carlo data. Physical Review E, 95(6):061302(R), 06 2017. URL: https://journals.aps.org/pre/pdf/10.1103/PhysRevE.95.061302, doi:10.1103/physreve.95.061302.

[SCG+21]

Hiroshi Shinaoka, Naoya Chikano, Emanuel Gull, Jia Li, Takuya Nomoto, Junya Otsuki, Markus Wallerberger, Tianchun Wang, and Kazuyoshi Yoshimi. Efficient ab initio many-body calculations based on sparse modeling of matsubara green's function. 2021. URL: https://arxiv.org/abs/2106.12685, doi:10.48550/ARXIV.2106.12685.

[SOOY17]

Hiroshi Shinaoka, Junya Otsuki, Masayuki Ohzeki, and Kazuyoshi Yoshimi. Compressing Green's function using intermediate representation between imaginary-time and real-frequency domains. Physical Review B, 96(3):035147 – 8, 07 2017. URL: https://journals.aps.org/prb/pdf/10.1103/PhysRevB.96.035147, doi:10.1103/physrevb.96.035147.

[Tre12]

André-Marie S. Tremblay. Two-Particle-Self-Consistent Approach for the Hubbard Model, pages 409–453. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012. URL: https://doi.org/10.1007/978-3-642-21831-6_13, arXiv:1107.1534, doi:10.1007/978-3-642-21831-6_13.

[VT97]

Y. M. Vilk and A.-M. S. Tremblay. Non-Perturbative Many-Body Approach to the Hubbard Model and Single-Particle Pseudogap. Journal de Physique I, 7(11):1309–1368, nov 1997. arXiv:cond-mat/9702188, doi:10.1051/jp1:1997135.

[WvLN+21]

Niklas Witt, Erik G. C. P. van Loon, Takuya Nomoto, Ryotaro Arita, and Tim O. Wehling. Efficient fluctuation-exchange approach to low-temperature spin fluctuations and superconductivity: from the hubbard model to $\mathrm Na_x\mathrm CoO_2\ifmmode \cdot \else ·\fi y\mathrm H_2\mathrm O$. Phys. Rev. B, 103:205148, May 2021. URL: https://link.aps.org/doi/10.1103/PhysRevB.103.205148, doi:10.1103/PhysRevB.103.205148.

[ZBV21]

Karim Zantout, Steffen Backes, and Roser Valentí. Two-particle self-consistent method for the multi-orbital hubbard model. Annalen der Physik, 533(2):2000399, 2021. URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/andp.202000399, arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/andp.202000399, doi:https://doi.org/10.1002/andp.202000399.